Applied Computer Science BSc (Hons)

Full-time undergraduate (3 years)

University Centre West Anglia (King's Lynn)



Develop the knowledge and skills you need to create technologies and applications that will change the world, with this full-time degree at University Centre West Anglia. Developed with leading employers, the course will prepare you for a fast-paced, rewarding career.

Full description


Our graduates go on to successful careers in many industries and fields including software development, database administration, networking, web and support. The qualification provides an ideal basis for postgraduate study or research.

Modules & assessment

Year one, core modules

  • Computers are a part of everyday life and there is no indication that this aspect will ever change. Understanding how they work and having the ability to program them for specific tasks (i.e. Factory Automation, Cash Point, etc.) is a key skill in today’s world. You will be introduced to the procedural programming paradigm, requiring no prior programming experience. You will use industry-standard tools and techniques to design, implement, test and document simple programs using a current programming language such as C, Python, or C++. The skills within will help you to understand the principal components of a program, laying the foundation for subsequent modules requiring structured programming ability. The principles of good programming practice will be emphasised and you will be introduced to techniques required to develop software which: is robust and efficient; satisfies the needs of the customer; consists of elegant, easy to read code; and is resilient within the cyber security context. By the end of the module, you should have sufficient mastery of a procedural programming language to allow you to design, implement and test simple programs. The skills taught within the module are intended to be directly transferable to the workplace and to provide a suitable foundation for pursuing a wide range of computing-related careers.
  • This module consists of two strands: 'Computer Architecture' and ‘Network fundamentals’. Both strands will enable you to learn materials that are of great interest to employers. This module aims to provide you with an understanding of the fundamental behaviour and components of a typical computer system, and how they collaborate to manage resources and provide services in scales from small embedded devices up to the global internet. You will be introduced to IP networks exemplified through the TCP/IP and OSImodels. Laboratory sessions will give you hands-on experience on constructing and configuring network devices. You will use the Cisco CCNA introduction to data network technology course which is the first of four Cisco courses that can be used to obtain a Cisco CCNA qualification. This module will lay the foundation of and prepare you for the computer software, computer networking and cyber security sector to name a few.
  • In your studies we will introduce you to the fundamental concepts required to understand, design, implement and test high-level programming languages. You will be introduced to a design methodology to help develop linear and hierarchical trains of thought from idea conception through design and implementation to testing. Using a simple interactive programming environment, you will discover how to create and use a wide variety of different basic and complex data structures. By the end of the module, you will be able to: Analyse a simple set of requirements; design appropriate data structures; select appropriate language syntax to manipulate program data; understand and use syntax for the implementation of conditional logic and repetition; be able to create simple scripts to perform a number of operations in turn to achieve a desired effect; demonstrate familiarity with the taxonomy of programming languages and the software development life-cycle and gain sufficient experience of a range of algorithm design techniques, such that, given a simple problem description, appropriate variables you can identify decisions and repetitive actions and translate them into appropriate code constructs.
  • During this module you will be introduced to the fundamental features of modern operating systems, their components and their use. We will look at key concepts including the kernel and its modes; memory and resource management; file systems, security and authentication; single and multi-tasking; interrupts, hardware and device drivers and command line and graphical user interfaces (GUI). Case studies will introduce you to command line interface (CLI) commands and scripting in both the Windows CLI and a Linux shell and allow you to develop simple scripts to automate activities in both operating system environments. You do not need any special technical knowledge before undertaking the module, however a basic user level familiarity with a GUI based operating system (such as Windows) will be useful. The skills acquired in the module will enable you to go on to study material in later modules which involve topics such as system administration, network and server configuration and technical support, all of which are key skills you may need as a graduate when working in the systems and network support industries.
  • As a student embarking on a degree in computer science or a closely related discipline, this module will equip you with the core mathematical skills needed to succeed. This module also contributes to the professional body accreditation of your programme of study, reflecting the criticality of mathematics/statistics skills in professional computing roles and in computer science research. During much of the module, you will be studying topics in discrete mathematics, such as set theory and logic, Boolean algebra, functions, matrices, sequences/series and product/summation notations. Further topics include probability and statistics, which are useful in understanding the behaviour of non-deterministic algorithms, data visualisation, and in the design and implementation of computer science research projects. The topics you will study will be directly related to computing principles. For example the use of set theory for: the representation of computational structures such as lists, trees and graphs; computations on discrete collections of data (such as in databases); the relationship between number classes and data types and in evaluating computability; and parallels between set theoretic operations and programming logic. The relationship between Boolean algebra and logic operators used in computer programming will be discussed, along with topics like the evaluation and simplification of Boolean expressions. Topics such as sequences and series will be related to elementary algorithm complexity (e.g., linear, logarithmic, and exponential functions), and mathematical functions (injective, surjective, bijective) will be related to program functions, with common functions found in nearly all non-trivial computer programs (such as modulus, floor/ceiling, and numerical operations such as gcd and lcm) being introduced and demonstrated in context. Permutations and combinations will be related to computer security, and the notion of intractable computational problems. Matrices will be in discussed in terms of their ability to represent computational structures such as images, graphs, and computer networks. Core descriptive and inferential statistics used for data visualisation and hypothesis testing (including histograms, distribution types, measures of central tendency and dispersion, and basic inferential statistics such as t-tests and linear correlation) will be examined. Mathematics and statistics skills are regarded as a core competency in computing professionals, and graduates with these skills are highly valued by employers in all job roles in computing and more widely.

Year two, core modules

  • Databases is identified as a specific area of study within the 2007 QAA Computing benchmark. Computer science and information science are mostly all about data. A database management system is a way to store data in a way that makes it easier to retrieve, update, search and delete. Databases is a specialist field in its own domain leading to careers such as Database Designer, Database Developer and Database Administrator. Moreover, it is a part and parcel for many other job roles e.g. Software Engineer, Game Developer, Full-stack Web Developer and Back-end Developer. You will not only learn the specialist skills to design and implement a database, but also practice soft skills such as time management, presentation, teamwork, and collaboration. You will work in teams and analyse an existing e-commerce systems, propose a database solution for such a system, design the database, implement the database and evaluate it using SQL queries. You will be guided to think critically for the rationale of your design and write useful queries considering their business purpose and benefit of writing these one way than the other.
  • A software engineering life cycle explores software development processes including requirements analysis, modelling and design, code implementation and design patterns and testing and maintenance. When studying the subject, you will gain a theoretical understanding and practical experience of the life-cycle of software applications by learning how to apply software engineering principles to the development of a software system. You will look into the difference between the Waterfall and Agile methodologies and use the latter for project management including learning about the cost drivers that can influence projects. You will use a version control tool to manage source code history. In addition you will apply the knowledge gained in earlier modules to model and design a system by using a range of UML diagrams and you will learn about architectural design including the application of design patterns. Both the automated and manual testing are discussed and you will have to demonstrate the ability to use both of them. You will build on your employability skills by working in a team to develop a complete and robust software system including coordinating the work among team members using a distributed-version control system.
  • Through a mixture of both classroom-based lecturing and practical sessions you will be introduced to the fundamental concepts and technologies that are required for the development of web-based applications. You will explore programming at the client side using technologies such as HTML, CSS and JavaScript and server side using the most popular and adopted programming and scripting languages such as Java, Python, PHP and Ruby on Rails. An important part of developing dynamic web-applications is the interaction with databases thus simple database connectivity will also be introduced and this will cover both SQL and NoSQL type databases. On successful completion of this module you will be equipped with a deep understanding of the relationships between user requirements and system specification. You will be proficient in developing robust web applications by using modern development stacks. This will make you attractive to employers in the fields of dynamic web application development and equip you with the technical skills needed if you wish to enter into self-entrepreneurship.
  • Knowledge of Digital Security is a core skill you require for any cybersecurity role and provides a springboard to intermediatelevel cybersecurity jobs. Your studies will comprise of real-world best practices in cybersecurity to ensure you have practical security problem-solving skills and learn how to address security incidents, not just identify them. You will also gain the knowledge and skills required to install and configure systems to secure applications, networks, and devices; perform threat analysis and respond with appropriate mitigation techniques; participate in risk mitigation activities; and operate with an awareness of applicable policies, laws, and regulations; in summary all the essential skills you need to get employed in the cyber security domain. Your study will also focus on today’s best practices for risk management and risk mitigation, including more emphasis on the practical and hands-on ability to both identify and address security threats, attacks, and vulnerabilities. The skills you'll gain will give you a baseline for nearly all cyber security jobs.
  • The Computing Research Methodologies module aims to elevate your understanding of research conventions in the field of computer science, reinforce your research skills and most importantly enable you to deploy them in your studies or your professional life. This module offers a comprehensive solution, comprising the required techniques to critically appraise published research, and carry out a piece of original research from the ground up. You will gain the experience of topic-specific research, analysis, and application which helps you to conduct a computer science-based research project. The module also covers the essential skills in project management and planning so that you can develop a viable research project plan, identify appropriate methodologies and technologies, and conduct the research experimental process. Through the course of this module, you will be exposed to data collection, statistical analysis and evaluation strategies, the essential skills you need to carry out an academic career. In conclusion, this module will aid those of you who have to conduct research as part of your studies and paves your way toward postgraduate studies or other academic career routes.
  • Modern networks continue to evolve to keep pace with the changing way organizations carry out their daily business. Users now expect instant access to company resources from anywhere and at any time. These resources not only include traditional data but also video and voice. There is also an increasing need for collaboration technologies that allow real-time sharing of resources between multiple remote individuals as though they were at the same physical location. The global Internet is a collection of networks, termed Autonomous Systems (AS), that are linked together via high-speed communication links provided by telecommunication organisations. Your studies will focus on the key concepts and protocols of network routing. We will cover basic routing and switching concepts, including static and default routing, Virtual Local Area Networks (VLANs), and inter-VLANs routing. Dynamic protocols such as RIP and OSPF will be discussed and explored. Network security using Access Control Lists will be introduced and the wider issues of network and Internet security considered. You will study in classes which contain a mixture of theory, delivered through a series of lectures, and practical implementations, delivered through a series of guided laboratory exercises. In the lab sessions you will gain a deep understanding of routing and switching concepts and acquire hands-on-skills using advanced network simulation tools that comply with industry standard router platforms. As part of studying this module you will be able to access on-line materials including the Cisco Networking Academy online curriculum and access specialist laboratory resources.
  • Data Structures and Algorithms is described in the ACM/IEEE Joint Task Force for Computing Curricula as being 'Fundamental to computer science and software engineering' which also notes that 'Algorithms are essential in all advanced areas of computer science: artificial intelligence, databases, distributed computing, graphics, networking, operating systems, programming, security, and so on'. In this module you will examine the core data structures and algorithms used in all nontrivial software, enabling you to make sound decisions in the construction of computing solutions that have specific constraints in terms of time (speed) and space (memory). You will learn how to compare the asymptotic behaviour of fundamental computational structures and algorithms and develop the critical skill of making evidence-based choices when selecting from among multiple possible approaches to a given computational problem. To accomplish this, you will study the core mathematical concepts that provide a framework for computational and analytical thinking independently of any particular programming language or computing architecture. In a highly cited cover article by the IEEE Computer Society, What knowledge is important to be a software professional?, the results of a survey of 186 software professionals are presented in which they were asked which topics in Computer Science degree programmes they believed to be the most important. Data Structures & Algorithms was rated the second most important topic, preceded only knowledge of "specific programming languages". The importance of this module to your future career in software development or technical/scientific computing cannot be overemphasised.

Year three, core modules

  • Professional Issues: Computing and Society aims to provide you an understanding of the issues, opportunities and problems which have arisen as a result of the computerisation of wide areas of human activity. It is designed to enhance advanced computer reflective thinking in both computer science specialists and others, and is a key part of the programme of professional development for computer scientists and others seeking to embody professional values and approaches in the IT and computing fields. You will be covered by relevant and current topics in Computer Law (e.g. Data Protection; Intellectual Property Law; Computer Misuse) and other social, ethical and legal topics such as considering the causes and effects of systems failures (including but not limited to computer systems failure). Other aspects such as the ethical and professional responsibilities of graduates - particularly those from IT and computing disciplines - will be critically appraised. It is essential to ensure that a professional engineer has an in depth understanding of professional ethics, law and the impact of what they do on society. The knowledge and understanding obtained in this module will prepare you with an in-depth understanding on different legal, ethical, professional and system aspects of your future career particularly in the areas of IT, computer science and engineering.
  • You will engage in a substantial piece of individual research and/or product development work, focused on a topic relevant to your specific discipline. The topic may be drawn from a variety of sources including: Anglia Ruskin research groups, previous/current work experience, the company in which you are currently employed, an Anglia Ruskin lecturer suggested topic or a professional subject of their specific interest (if suitable supervision is available).
  • Use current industry standard tool and techniques and study the theoretical/mathematical foundations of image processing in tandem with practical work and coursework that applies this theory to modern real-world scenarios. Recent case studies have included security applications for the detection of human faces, systems for the automatic analysis of biological specimens, next-generation gesture-based interfaces, and machine vision systems for automated manufacturing. Image Processing is becoming increasingly important as computing power grows, and is used in a very diverse spectrum of computational problems, from self-driving cars, factory automation and robotics, intelligent medical diagnosis, airport security, the military, astrophysics, biometric systems (such as face, fingerprint and iris recognition), environmental monitoring, human-computer interfaces (such as gesture recognition and lip-reading systems), sport (for example, goal line technology and intelligent camera control in football), barcode and QR-code devices, law (from enhancing and interpreting criminal forensic evidence to upholding copyright law through watermarking), and in any applications that entail image manipulation and augmentation, such as Facebook Messenger, Snapchat, Instagram and many others. This module provides you with the opportunity to gain a solid understanding of the core computational processes that underlie these diverse applications, and the fundamental knowledge to apply what you have learned to new situations.


We’ll assess your progress from your written assignments, presentations, exams, major project, class and lab-based exercises and group project work. 

Where you'll study

Your faculty

The Faculty of Science & Engineering is one of the largest of the four faculties at Anglia Ruskin University. Whether you choose to study with us full-time or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science, technology and engineering fields. This is key to all of our futures.

Where can I study?

Fees & funding

Course fees

UK & EU students, 2019/20 (full-time, per year)


Fee information

For more information about tuition fees, including the UK Government's commitment to EU students, please see our UK/EU funding pages.

How do I pay my fees?

You can pay your fees in the following ways.

Tuition fee loan

UK students can take out a tuition fee loan, which you won’t need to start repaying until after your graduate. Or there's the option to pay your fees upfront.

Loans and fee payments


We offer a fantastic range of ARU scholarships, which provide extra financial support while you’re at university. Some of these cover all or part of your tuition fees.

Explore ARU scholarships

Funding for UK students

Most new UK undergraduate students can apply for government funding to support their studies and university life. This also applies to EU, EEA and Swiss nationals who have citizens' rights following Brexit.

Government funding includes Tuition Fee Loans and Maintenance Loans. There are additional grants available for specific groups of students, such as those with disabilities or dependants.

We also offer a range of ARU scholarships, which can provide extra financial support while you’re at university.

Entry requirements

Loading... Entry requirements are not currently available, please try again later.


  • 80 UCAS tariff points from a minimum of 2 A levels or equivalent level 3 qualification, eg Extended Diploma (MMP) or Access to Computing course (30 level 3 credits at Merit grade are required).
  • All applicants must have GCSE English and maths at grade 4 or above (or equivalent).

Whether you're studying entirely online or through a blend of face-to-face and online learning in September 2020, you'll need a computer and reliable internet access to successfully engage with your course. Before starting the course, we recommend that you check our technical requirements for online learning.

Important additional notes

Our published entry requirements are a guide only and our decision will be based on your overall suitability for the course as well as whether you meet the minimum entry requirements. Other equivalent qualifications may be accepted for entry to this course, please email for further information.

You'll need a computer and reliable internet access to successfully engage with your course. Before starting a course, we recommend that you check our technical requirements for online learning. Our website also has general information for new students about starting at ARU.

All tariff points must come from A levels. Points from AS levels cannot be counted towards the total tariff points required for entry to this course.

Similar courses that may interest you

Applied and Clinical Psychology BSc (Hons)

Distance learning, part-time undergraduate (5 years)

Distance learning


Applied Computer Science BSc (Hons)

Full-time undergraduate (3 years, 4 years with foundation year)

ARU Peterborough


Osteopathy MOst

Full-time, part-time undergraduate (4 years, 6 years)

The London School of Osteopathy


Apply now

UK students

Apply for 2022

UCAScode: G401

Apply through UCAS