Artificial Intelligence with Cyber Security MSc

Postgraduate (1 year full-time)

Cambridge

September

Overview

Gain an in-depth understanding of artificial intelligence concepts, principles and technologies that affect cyber security. The security of business systems and data is vital, and with most business having an online presence you will learn to implement AI to monitor and protect against cyber attacks.

Full description

Careers

Once you have completed this course you will be prepared to undertake roles that require programming for data analysis, a knowledge of machine learning, neural networks and deep learning and also apply these skills specifically to cyber security.

If you'd like to continue your studies in research or further education, Anglia Ruskin offers a wide range of full-time and part-time postgraduate research degrees including MPhil or/and PhD in Computer Science, or even a DProf in Science and Technology.

Modules & assessment

Core modules

  • Python and Data Analysis
    This module focuses on the use of Python programming for data analysis and provides you with the skills needed to complete artificial intelligence projects that are relevant for both industry and research. You will learn how to use Python programming to efficiently store and manipulate data as well as relevant data science tools that will enable you to start your own data analysis. You will be introduced to IPython as an interactive shell to be used as a primary development environment, will learn the basics and advanced features of NumPy (Numerical Python) and will create data visualisations with Matplotlib. This module will also introduce the Pandas library for data analysis. Finally, you will learn how to solve problems by incorporating all the elements reviewed in the module and apply them in different scenarios. This is a hands-on module where you will understand Python concepts through practical lectures and demonstrations and then apply them in a practical session. This module and will provide you with the necessary skills to use Python, as well as its different tools/libraries, to prepare data for data analysis, you are not expected to have previous experience with Python, but it is desirable to have programming experience.
  • Web Application Security
    Web applications have reshaped business for the better by making e-commerce, online banking, and highly customised customer and partner portals possible. By moving business-critical applications and services like sales, support and purchasing to the Web, organisations have extended the boundaries of the enterprise—opening it up to enhance interaction with customers, suppliers, partners and employees. Web applications also speed and streamline internal processes. In other words, they deliver the benefit businesses are always looking for, from higher employee productivity and lower support costs to increased customer satisfaction and greater revenue. There is a serious consequence to this increased reliance on Web applications: they are inherently insecure and easily compromised. In fact, Gartner/NIST rates between 75 to 92 percent of vulnerabilities now occur in application rather than the network. Vulnerable Web applications not only put network systems and devices at much greater risk, they also offer a direct conduit to confidential customer data such as credit card numbers, account history and health records, as well as to sensitive corporate information. This module through the use of lecture material, online reading tools industry standard tools and practical lab exercises allow you to be able to critically analyse and appraise web applications from a penetrations tester point of view and be able interpret how security vulnerabilities impact web application design and operation. You will learn to evaluate web applications security risk levels and recommend appropriate mitigation controls.
  • Advanced Machine Learning
    Machine learning is a sub-discipline of the Artificial Intelligence that deals with teaching the computer to act without being programmed. In this module you will learn about the tools and algorithms that can be used to create machine learning models. Big data and their economic, legal and ethical aspects are explored, along with data acquisition and pre-processing methods that are used to make these suitable for machine learning algorithms. You will also look into how large data sets should be divided into a training set and a test set and different types of problems that can be solved with machine learning will also be introduced. A range of parametric algorithms such as linear regression, logistic regression, and non-parametric algorithms such as K-Nearest neighbour, decision trees, SVMs, will be discussed. To be able to evaluate a model, a few performance metrics will be explored, the metrics chosen influence how the performance of machine learning algorithms are measured and compared. An important concept that you have to be aware of when training machine learning algorithms is ‘overfitting’, an over fitted model will have a low accuracy and therefore you will learn how to use regularization to avoid overfitting.
  • Research Methods
    Gain support and foundations in the research skills needed for your Masters level dissertation. You’ll investigate research activities including project management, research project design and analyses, ethical considerations and dissertation preparation.
  • Cyber Security and AI Case Studies
    Here you will consider how machine learning is being applied to modern cyber security and threat detection. You will be introduced to the tools and techniques in network and software application threat mitigation, and discuss how artificial intelligence is currently, or should be, used to support security analysts in their jobs. The practical sessions of this module are very hands-on and you will learn basic cyber penetration testing techniques and tools, through a series of weekly laboratory tasks. Penetration testing framework tools such as Kali, will be used to test both network and software applications for vulnerabilities. Throughout this module, you will be encouraged to consider how the tools and techniques covered could be applied to ideas for you Major Project. You are not expected to have previous experience with threat detection, but it is desirable to have an understanding of the OSImodel and network protocol handshakes, together with an understanding of how software applications are built. You are also not expected to have previous experience with penetration testing, but would benefit from having used Linux operating systems such as Debian.
  • Neural Computing and Deep Learning
    Deep learning and neural networks have revolutionised numerous fields in recent years. From smartphones and smart watches to cars and even house appliances, electronic devices are increasingly making use of machine learning and neural computing to take decisions, categorise and classify items, learn behaviours, assist us with choices and make prediction. The near future will see an even larger number of “self-learning” devices in almost every aspect of our lives. This module explores two main areas of Intelligent Systems: neural networks and deep learning. You will start analysing the structure of neural networks, from the theoretical aspects to the practical implementations, both biological and artificial. You will then move to the concept of supervised and unsupervised learning and analyse some of the most widely used deep learning methodologies. You will cover some of the main models and algorithms for regression, classification, clustering and decision making processes. The module will include applications of neural computing and deep learning to big data in physical and biological sciences, finance and social sciences. You will use primarily the Python programming language and requires familiarity with basic linear algebra, probability theory, and programming in Python.
  • Major Project
    This module supports students in the preparation and submission of a Master's stage project, dissertation or artefact. The Module provides the opportunity for students to select and explore in-depth, a topic that is of interest and relevant to their course in which they can develop a significant level of expertise. It enables students to: demonstrate their ability to generate significant and meaningful questions in relation to their specialism; undertake independent research using appropriate, recognised methods based on current theoretical research knowledge, critically understand method and its relationship to knowledge; develop a critical understanding of current knowledge in relation to the chosen subject and to critically analyse and evaluate information and data, which may be complex or contradictory, and draw meaningful and justifiable conclusions; develop the capability to expand or redefine existing knowledge, to develop new approaches to changing situations and/or develop new approaches to changing situations and contribute to the development of best practice; demonstrate an awareness of and to develop solutions to ethical dilemmas likely to arise in their research or professional practice; communicate these processes in a clear and elegant fashion; evaluate their work from the perspective of an autonomous reflective learner.

Assessment

Throughout the course, we’ll use a range of assessment methods to measure your progress. You’ll complete exams, essays, research reports, oral presentations, and a dissertation on a subject of your choice.

Where you'll study

Your faculty

The Faculty of Science & Engineering is one of the largest of the four faculties at Anglia Ruskin University. Whether you choose to study with us full-time or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science, technology and engineering fields. This is key to all of our futures.

Where can I study?

Cambridge
Lord Ashcroft Building on our Cambridge campus

Our campus is close to the centre of Cambridge, often described as the perfect student city.

Explore our Cambridge campus

Fees & funding

Course fees

UK & EU students starting 2020/21 (per year)

£8,900

International students starting 2020/21 (per year)

£14,100

How do I pay my fees?

Paying upfront

You won't need to pay fees until you've accepted an offer to attend, but you must pay your fees up-front, in full or in instalments.

How to pay your fees directly

International students

You must pay your fees up-front, in full or in instalments. You will also be asked for a deposit or sponsorship letter/financial guarantee. Details will be in your offer letter.

Paying your fees

Funding for UK & EU students

It’s important to decide how to fund your course before applying. Use our finance guide for postgraduate students to learn more about postgraduate loans and other funding options.

We offer a fantastic range of ARU scholarships, which provide extra financial support while you're at university. Find out more about eligibility and how to apply.

Funding for international students

We offer a number of scholarships, as well as an early payment discount. Explore your options:

Entry requirements

Loading... Entry requirements are not currently available, please try again later.

Important additional notes

Our published entry requirements are a guide only and our decision will be based on your overall suitability for the course as well as whether you meet the minimum entry requirements. Other equivalent qualifications may be accepted for entry to this course, please email answers@anglia.ac.uk for further information.

International students

We welcome applications from international and EU students, and accept a range of international qualifications.

English language requirements

If English is not your first language, you'll need to make sure you meet our English language requirements for postgraduate courses.

Improving your English language skills

If you don't meet our English language requirements, we offer a range of courses which could help you achieve the level required for entry onto a degree course.

We also provide our own English Language Proficiency Test (ELPT) in the UK and overseas. To find out if we are planning to hold an ELPT in your country, contact our country managers.

Suggested courses that may interest you

Artificial Intelligence and Big Data

Full-time postgraduate (1 year)

Cambridge

September

Intelligent Systems and Machine Learning

Full-time postgraduate (1 year)

Cambridge

September

Computer Science

Full-time, full-time with placement postgraduate ()

Cambridge

January, September

Get more information

UK & EU applicants

01245 68 68 68

Enquire online

International applicants

+44 1245 68 68 68

Enquire online